Wind, Fuel Cell and Solar Power Charging Systems

Cat Power

Hamster Power

Dog Power

Other Methods

What are the Options?

Wind

Fuel Cell

• PEMH (Proton Exchange Membrane Hydrogen)

DMFC (Direct Methanol Fuel Cell)

Solar

- Passive
- Passive Single Axis
- Tracking Multi-Axis

Wind

Wind

Pro

- Can provide power day and night
- Low maintenance
- Best for long term use
- Portable for home use.

Con

- Noisy
- Set-Up Time
- Storage Issues
- Control Issues

Just like an Alternator

Specs and Cost

400 watt x 12 volt turbine = \$800.00

Mounting base = 900.00

Pole, wire, loom, controller, etc = 300.00

Total = \$2000.00

Power Consumption

12V Appliances	Amps	x Qty.	x Hrs. Run/day	=Total amps per day
10 watt lights	0.8	2000 - 1980 19		
15 watt lights	1			
Water pump	4			
12 volt TV	3			9
Automatic Fan	2			
Furnace	8			
12 Volt Stereo	0.8			
Propane Alarm	0.21	1	24	5

*Fan and furnace are not typically run at the same time.

120 VAC Appliances - Using DC to AC Inverters

TV	4	3ř	1	
VCR	3	25 25	1.	
Satellite	4	~ []		
Microwave	100	1	0.1	10
Toaster	65			
Coffee Maker	60	20 27		7
Blender	12	1	1	
Computer	25	47 	1	
Laptop	5	1. 1.	12	
Total amp hours per day		41		

*All amperage ratings are based on a 12 volt system.

Fuel Cells

Two basic types
PEM
(proton exchange membrane)
DMFC
(direct methanol fuel cell)

• (direct methanol fuel cell)

PEM Fuel Cell Power Cycle

PEM Fuel Cell Operation

PEM Hydrogen fuel cell

PEM pros and cons

Pros

- Silent
- Only by-product is water
- No moving parts
- High power density
- Low weight
- Fast start up time

Cons

- Hydrogen is tough to store
- Expense (platinum electrodes)
- Very sensitive to CO poisoning
- Temperature sensitive

JADOO

Regulated 12VDC and 110VAC continuous output 100 watts
External automotive-type output; convenient for directly powering 12VDC applications
Weight: 50 lbs (23kg) — half the weight of batteries providing the same energy
Operates indoors or out
Zero GHG emissions
180 amp hours of runtime and offers twice the energy density of deep cycle marine batteries.

XRT weighs only 50 pounds, but provides the energy of four 45 Amp-hour batteries that weigh over 100 pounds.

Direct Methanol Fuel Cell (DFMC Methanol)

Pros

- Fuel easy to store as a liquid
- Much better energy density than hydrogen
- Wider operating temperature range

Cons

- Not totally silent
- Has CO2 as a by product
- Methanol hazardous to health

DMFC Operation

EFOY (Methanol)

Optional on Westphalia Coaches JAYCO in 2012

The EFOY is connected directly to the battery and activates when battery voltage falls below a set value and deactivates to a standby mode when batter is fully charged.

EFOY Specs

An EFOY Pro 2200 using a 28-litre methanol cartridge can power a 100W device for 13 days

Ideally a fuel cell would be used in conjunction with solar

2160 Wh / day
90 W
12 V / 24 V
7.5 A 3.75 A
8.95 kg (19.7 lbs)
-20 to +45 °C (-4 °F to +113 °F)
0.9 l / kWh
433 x 188 x 278 mm (17 x 8 x 11 in)

Fuel Cell Costs

EFOY 2200 (smaller units available)

- \$6500.00 unit
- \$57.00 for 10 liters of methanol

JADOO XRT 1600

- \$8000.00 unit
- \$100.00 hydrogen cannister
- Can be refilled using regular welding supply hydrogen

Basic Solar for a GMC

130 watts per square foot

If we could capture the sun's energy output completely we could generate 130 watts per square foot.
10 square feet of panel 1300 watts.

HOWEVER

Today's solar panels are horribly inefficient

Types of Panels

Monocrystalline Solar Panel

•Monocrystalline solar panels are made from a large crystal of silicon.

These type of solar panels are the most efficient as in absorbing sunlight and converting it into electricity, however they are the most expensive.
They do somewhat better in lower light conditions then the other types of solar panels.

Polycrystalline Solar Panels are the most common type of solar panels on the market today.
They look a lot like shattered glass.
They are slightly less efficient then the monocrystalline solar panels and less expensive to produce.
Instead of one large crystal, this type of solar panel consists of multiple amounts of smaller silicon crystals.

•Amorphous solar panels consist of a thin-like film made from molten silicon that is spread directly across large plates of stainless steel or similar material.

•These types of solar panels have lower efficiency then the other two types of solar panels, and the cheapest to produce.

•One advantage of amorphous solar panels over the other two is that they are shadow protected. That means that the solar panel continues to charge while part of the solar panel cells are in a shadow.

•These work great on boats and other types of transportation.

Charge Controllers

- A charge controller, or charge regulator is similar to the voltage regulator in your car. It regulates the voltage and current coming from the solar panels going to the battery. Most "12 volt" panels put out about 16 to 20 volts, so if there is no regulation the batteries will be damaged from overcharging.
- Most batteries need around 14 to 14.5 volts to get fully charged.

Charge Controllers

Wide variety from \$20.00 to \$180.00

Basic differences

- Fixed voltage
- Adjustable voltage
- Adjustable for battery types

Trace C40 Panel

Main/Generator Switch

Batteries (All AGM) 3 banks \checkmark House 2 x 125A \checkmark Start 2 x 125A Start and House on combiner when running

√Generac l x 75A

Mounting Solar Panels on your GMC

House Battery Panels 2 x 75 watts @ 12v

Starting Battery Panel 20 watts @ 12v

Tilt Racks

Fixed on GMC

Another GMC

Another GMC

About 35 amps on this GMC

Solar Cost

2 x 75 watt panels
Charge Controller
Wiring
Mounts

\$700.00 \$100.00 \$40.00 \$70.00

TOTAL

\$910.00

For those of you who really want to blow some cash!!

Next Gen Solar Panels

